shared3p_statistics_glm.sc
shared3p_statistics_glm.sc
Module for performing regression analysis of generalized linear models.
Functions:
GLMAIC
Compute the Akaike information criterion of a generalized linear model.
Detailed Description
D - shared3p protection domain |
Supported types - int32 / int64 / float32 / float64 |
Parameters
dependent |
- dependent variable |
glm |
- structure returned by the model fitting function |
Akaike information criterion |
None |
Function Overloads
D float32 GLMAIC(D int32[[1]] dependent, GLMResult< D, float32 > glm)
D float64 GLMAIC(D int64[[1]] dependent, GLMResult< D, float64 > glm)
D float32 GLMAIC(D float32[[1]] dependent, GLMResult< D, float32 > glm)
D float64 GLMAIC(D float64[[1]] dependent, GLMResult< D, float64 > glm)
GLMAIC(direct)
Compute the Akaike information criterion of a generalized linear model.
Detailed Description
D - shared3p protection domain |
Supported types - int32 / int64 / float32 / float64 |
Parameters
dependent |
- dependent variable |
vars |
- independent variables (each column is a variable) |
coefficients |
- model coefficients |
family |
- indicates the distribution of the dependent variable |
Akaike information criterion |
None |
Function Overloads
D float32 GLMAIC(D int32[[1]] dependent, D int32[[2]] vars, D float32[[1]] coefficients, int64 family)
D float64 GLMAIC(D int64[[1]] dependent, D int64[[2]] vars, D float64[[1]] coefficients, int64 family)
D float32 GLMAIC(D float32[[1]] dependent, D float32[[2]] vars, D float32[[1]] coefficients, int64 family)
D float64 GLMAIC(D float64[[1]] dependent, D float64[[2]] vars, D float64[[1]] coefficients, int64 family)
constants
constants
Constants
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The "family" constants are used to specify the distribution of the dependent variable. The "SOLE method" constants specify the algorithm used to solve systems of linear equations. |
generalizedLinearModel
Fitting of generalized linear models.
Detailed Description
D - shared3p protection domain |
Supported types - int32 / int64 / float32 / float64 |
You can pass an empty matrix as the variables argument to specify a null model with just intercept. |
Parameters
dependent |
- sample vector of the dependent variable |
variables |
- a matrix where each column is a sample of an explanatory variable |
family |
- indicates the distribution of the dependent variable |
iterations |
- number of iterations of the GLM algorithm |
GLMResult structure |
None |
Function Overloads
generalizedLinearModel(D int32[[1]] dependent, D int32[[2]] variables, int64 family, uint iterations)
generalizedLinearModel(D int64[[1]] dependent, D int64[[2]] variables, int64 family, uint iterations)
generalizedLinearModel(D float32[[1]] dependent, D float32[[2]] variables, int64 family, uint iterations)
generalizedLinearModel(D float64[[1]] dependent, D float64[[2]] variables, int64 family, uint iterations)
generalizedLinearModel(with method parameter)
Fitting of generalized linear models.
Detailed Description
D - shared3p protection domain |
Supported types - int32 / int64 / float32 / float64 |
You can pass an empty matrix as the variables argument to specify a null model with just intercept. |
Parameters
dependent |
- sample vector of the dependent variable |
variables |
- a matrix where each column is a sample of an explanatory variable |
family |
- indicates the distribution of the dependent variable |
iterations |
- number of iterations of the GLM algorithm |
SOLEmethod |
- method to use for solving systems of linear equations |
SOLEiterations |
- if the conjugate gradient method is used for solving systems of linear equations, this parameter is the number of iterations to use |
returns GLMResult structure |
None |
Function Overloads
generalizedLinearModel(D int32[[1]] dependent, D int32[[2]] variables, int64 family, uint iterations, int64 SOLEmethod, uint SOLEiterations)
generalizedLinearModel(D int64[[1]] dependent, D int64[[2]] variables, int64 family, uint iterations, int64 SOLEmethod, uint SOLEiterations)
generalizedLinearModel(D float32[[1]] dependent, D float32[[2]] variables, int64 family, uint iterations, int64 SOLEmethod, uint SOLEiterations)
generalizedLinearModel(D float64[[1]] dependent, D float64[[2]] variables, int64 family, uint iterations, int64 SOLEmethod, uint SOLEiterations)
glmStandardErrors
Estimate the standard errors of coefficients of generalized linear models.
Detailed Description
D - shared3p protection domain |
Supported types - int32 / int64 / float32 / float64 |
Parameters
dependent |
- sample vector of dependent variable |
variables |
- a matrix where each column is a sample of an explanatory variable |
coefficients |
- coefficients estimated by the GLM fitting procedure |
family |
- indicates the distribution of the dependent variable |
returns a vector with the standard errors of each coefficient |
None |
Function Overloads
D float32 glmStandardErrors(D int32[[1]] dependent, D int32[[2]] variables, D float32[[1]] coefficients, int64 family)
D float64 glmStandardErrors(D int64[[1]] dependent, D int64[[2]] variables, D float64[[1]] coefficients, int64 family)
D float32 glmStandardErrors(D float32[[1]] dependent, D float32[[2]] variables, D float32[[1]] coefficients, int64 family)
D float64 glmStandardErrors(D float64[[1]] dependent, D float64[[2]] variables, D float64[[1]] coefficients, int64 family)